Search results for "Mean curvature flow"
showing 10 items of 19 documents
A Nonlocal Mean Curvature Flow
2019
Consider a family { Γt}t≥0 of hypersurfaces embedded in \(\mathbb {R}^N\) parametrized by time t. Assume that each Γt = ∂Et, the boundary of a bounded open set Et in \(\mathbb {R}^N\).
A sharp estimate of the extinction time for the mean curvature flow
2007
We establish a pointwise comparison result for a nonlinear degenerate elliptic Dirichlet problem using an isoperimetric inequality involving the total mean curvature. In particular this result provides a sharp estimate for the extinction time of a class of compact surfaces, wider than the convex one, moving by mean curvature flow. Finally we present numerical experiments to compare our estimate with those known in literature.
Reilly's type inequality for the Laplacian associated to a density related with shrinkers for MCF
2015
Let $(\bar{M},,e^\psi)$ be a Riemannian manifold with a density, and let $M$ be a closed $n$-dimensional submanifold of $\bar{M}$ with the induced metric and density. We give an upper bound on the first eigenvalue $\lambda_1$ of the closed eigenvalue problem for $\Delta_\psi$ (the Laplacian on $M$ associated to the density) in terms of the average of the norm of the vector ${\vec{H}}_{{\psi}} + {\bar \nabla}$ with respect to the volume form induced by the density, where ${\vec{H}}_{{\psi}}$ is the mean curvature of $M$ associated to the density $e^\psi$. When $\bar{M}=\Bbb R^{n+k}$ or $\bar{M}=S^{n+k-1}$, the equality between $\lambda_1$ and its bound implies that $e^\psi$ is a Gaussian den…
Fl�chen Beschr�nkter Mittlerer Kr�mmung in Einer Dreidimensionalen Riemannschen Mannigfaltigkeit
1973
In recent papers HILDEBRANDT [11] and HARTH [5] proved the existence of solutions of the problem of Plateau for surfaces of bounded mean curvature with fixed and free boundaries in E3 and for minimal surfaces with free boundaries in a Riemannian manifold, respectively. Here their methods will be combined to solve the problem of Plateau for surfaces of bounded mean curvature in a Riemannian manifold. This will be done for fixed and free boundaries. Moreover, isoperimetric inequalities for the solutions will be given.
Volume estimate for a cone with a submanifold as vertex
1992
We give some estimates for the volume of a cone with vertex a submanifold P of a Riemannian or Kaehler manifold M. The estimates are functions of bounds of the mean curvature of P and the sectional curvature of M. They are sharp on cones having a basis which is contained in a tubular hypersurface about P in a space form or in a complex space form.
A non-homogeneous elliptic problem dealing with the level set formulation of the inverse mean curvature flow
2015
Abstract In the present paper we study the Dirichlet problem for the equation − div ( D u | D u | ) + | D u | = f in an unbounded domain Ω ⊂ R N , where the datum f is bounded and nonnegative. We point out that the only hypothesis assumed on ∂Ω is that of being Lipschitz-continuous. This problem is the non-homogeneous extension of the level set formulation of the inverse mean curvature flow in a Euclidean space. We introduce a suitable concept of weak solution, for which we prove existence, uniqueness and a comparison principle.
On the plateau problem for surfaces of constant mean curvature
1970
Some remarks on the extinction time for the mean curvature flow
2005
We write some consideratons on the extinction time for the mean curvature flow
Existence, regularity, and boundary behaviour of generalized surfaces of prescribed mean curvature
1974
Volume preserving mean curvature flows near strictly stable sets in flat torus
2021
In this paper we establish a new stability result for the smooth volume preserving mean curvature flow in flat torus $\mathbb T^n$ in low dimensions $n=3,4$. The result says roughly that if the initial set is near to a strictly stable set in $\mathbb T^n$ in $H^3$-sense, then the corresponding flow has infinite lifetime and converges exponentially fast to a translate of the strictly stable (critical) set in $W^{2,5}$-sense.